
CS 61B Disjoint Sets and Asymptotics
Spring 2021 Discussion 6: February 22, 2021

1 Disjoint Sets, a.k.a. Union Find
In lecture, we discussed the Disjoint Sets ADT. Some authors call this the Union Find ADT. Today,

we will use union find terminology so that you have seen both.

(a) What are the last two improvements (out of four) that we made to our naive implementation of

the Union Find ADT during lecture 14 (Monday’s lecture)?

1. Improvement 1:

2. Improvement 2:

The naive implementation was maintaining a record of every single connection. Improvements

made were:

- Keeping track of sets rather than connections (QuickFind)

- Tracking set membership by recording parent not set # (QuickUnion)

- Union by Size (WeightedQuickUnion)

- Path Compression (WeightedQuickUnionWithPathCompression)

We will focus on attention on the last two, union by size and path compression.

(b) Assume we have nine items, represented by integers 0 through 8. All items are initially uncon-

nected to each other. Draw the union find tree, draw its array representation after the series of

connect() and find() operations, and write down the result of find() operations using Weight-

edQuickUnion without path compression. Break ties by choosing the smaller integer to be the

root.

Note: find(x) returns the root of the tree for item x.

connect(2, 3);

connect(1, 2);

connect(5, 7);

connect(8, 4);

connect(7, 2);

find(3);

connect(0, 6);

connect(6, 4);

connect(6, 3);

find(8);

find(6);

find() returns 2, 2, 2 respectively.
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The array is [2, 2, -9, 2, 0, 2, 0, 5, 4]. 2

0 1 3 5

4 6 7

8

(c) Extra: Repeat the above part, using WeightedQuickUnion with Path Compression.

find() returns 2, 2, 2 respectively.

The array is [2, 2, -9, 2, 2, 2, 2, 5, 2]. 2

0 1 3 4 5 6 8

7

(d) What is the runtime for ”connect” and ”isConnected” operations using our Quick Find, Quick

Union, and Weighted Quick Union ADTs? Can you explain why the Weighted Quick union has

better runtimes for these operations than the regular Quick Union?

Runtime comparisons

OPERATION Quick Find Quick Union WQU

Connect O(N) O(N) O(logN)

IsConnected O(1) O(N) O(logN)

The Weighted Quick Union has better run times because by picking the smaller tree to be the

child, we can achieve shorter overall heights in our underlying tree. This means that for any child,

traversing up the tree to find it’s root, or it’s set representative, is limited to this shortened tree

height. For both our standard Quick Union and Weighted Quick Union, the time it takes to connect

two items depends on this height, as it requires checking the roots of the current items and then

changing one to be the other (if they’re not already connected). Then the time it takes to find the

root of the current element is proportional to the time it takes to connect two items. Similarly, the

time it takes to check if two items are connected relies on finding the roots of the current elements.

Not included in this chart is the WQU with path compression. While the proof for it’s runtime

is out of scope for this class, it achieves amortized constant runtime for both of Connect and

isConnected.
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2 Asymptotics
(a) Order the following big-O runtimes from smallest to largest.

O(log n), O(1), O(nn), O(n3), O(n log n), O(n), O(n!), O(2n), O(n2 log n)

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(n2 log n) ⊂ O(n3) ⊂ O(2n) ⊂ O(n!) ⊂ O(nn)

(b) Are the statements in the right column true or false? If false, correct the asymptotic notation

(Ω(·), Θ(·), O(·)). Be sure to give the tightest bound. Ω(·) is the opposite of O(·), i.e. f(n) ∈
Ω(g(n)) ⇐⇒ g(n) ∈ O(f(n)). Hint: Make sure to simplify the runtimes first.

f(n) = 20501

f(n) = n2 + n

f(n) = 22n + 1000

f(n) = log(n100)

f(n) = n log n + 3n + n

f(n) = n log n + n2

f(n) = n log n

g(n) = 1

g(n) = 0.000001n3

g(n) = 4n + n100

g(n) = n log n

g(n) = n2 + n + log n

g(n) = log n + n2

g(n) = (log n)2

f(n) ∈ O(g(n))

f(n) ∈ Ω(g(n))

f(n) ∈ O(g(n))

f(n) ∈ Θ(g(n))

f(n) ∈ Ω(g(n))

f(n) ∈ Θ(g(n))

f(n) ∈ O(g(n))

i) False. Although this bound is technically correct, it is NOT the tightest bound. Θ(·) is a better

bound.

ii) False, O(·). Even though n3 is strictly worse than n2, n2 is still in O(n3) because n2 is always

as good as or better than n3 and can never be worse.

iii) False. Again, technically correct, but it is not a tight bound. Θ(·) is a better bound.

iv) False, O(·).
v) True.

vi) True.

vii) False, Ω(·).

(c) Give the worst case and best case runtime in terms of M and N . Assume ping is in Θ(1) and

returns an int.

1 for (int i = N; i > 0; i--) {

2 for (int j = 0; j <= M; j++) {

3 if (ping(i, j) > 64) break;

4 }

5 }

Worst: Θ(MN), Best: Θ(N) We repeat the outer loop N times, no matter what. For the inner

loop, we see the amount of times we repeat it depends on the result of ping. In the best case, it

returns true immediately, such that we’ll only ever look at the inner loop once and then break the

inner loop. In the worst case, ping is always false and we complete the inner loop M times for

every value of N in the outer loop.
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(d) Below we have a function that returns true if every int has a duplicate in the array, and false if

there is any unique int in the array. Assume sort(array) is in Θ(N logN) and returns array

sorted.

1 public static boolean noUniques(int[] array) {

2 array = sort(array);

3 int N = array.length;

4 for (int i = 0; i < N; i += 1) {

5 boolean hasDuplicate = false;

6 for (int j = 0; j < N; j += 1) {

7 if (i != j && array[i] == array[j]) {

8 hasDuplicate = true;

9 }

10 }

11 if (!hasDuplicate) return false;

12 }

13 return true;

14 }

1. Give the worst case and best case runtime where N = array.length.

Its runtime is Θ(NlogN + N2) = Θ(N2) for the worst case the if statement always sets x to

true. The best case is if we we don’t set x to be true in the very first loop, which allows us to

only go through the entire array once giving us Θ(NlogN + N) = Θ(NlogN).

2. Try to come up with a way to implement noUniques() that runs in Θ(NlogN) time. Can we

get any faster?

We should rely on the fact that a sorted array means all duplicates will be adjacent. curr

represents the current item we are checking, and we check the item after curr (since our array

is sorted) to see if a duplicate exists. There is a possible Θ(N) solution, but that involves

data structures we haven’t covered yet!

public static boolean noUniques(int[] array) {

array = sort(array);

int N = array.length;

int curr = array[0];

boolean unique = true;

for (int i = 1; i < N; i += 1) {

if (curr == array[i]) {

unique = false;

} else if (unique) {

return false;

} else {

unique = true;

curr = array[i];

}

}

return !unique;

}
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