
CS 61B MSTs, Dijkstra’s, and Tries
Spring 2021 Exam Prep Discussion 11: April 5, 2021

1 Oracle Dijkstra’s
In some graph G, we are given a sorted list of nodes, sorted by their distances from

some start vertex A. Design an efficient algorithm to find the shortest paths tree

starting from A.

Hint: Your algorithm should be more efficient than Dijkstra’s.

Solution: This algorithm essentially removes the purpose of the priority queue in

normal Dijkstra’s. When a node is removed from the PQ normally, this signifies we

have found the shortest path from the source to that node, AND that this node is

the next closest node to the source that hasn’t been visited yet. In a sorted list of

nodes, we can simply traverse through the nodes in order. Therefore, our algorithm

is simply to run Dijkstra’s, but instead of keeping a priority queue we go through

our sorted list of nodes in order. Our runtime is O(V+E).



2 MSTs, Dijkstra’s, and Tries

2 Multiple MSTs
Recall a graph can have multiple MSTs if there are multiple spanning trees of

minimum weight.

(a) For each subpart below, select the correct option and justify your answer. If

you select “never” or “always,” provide a short explanation. If you select

“sometimes”, provide two graphs that fulfill the given properties — one with

multiple MSTs and one without. Assume G is an undirected, connected graph.

1. If none the edge weights are identical, there will

© never be multiple MSTs in G.

© sometimes be multiple MSTs in G.

© always be multiple MSTs in G.

Justification:

2. If some of the edge weights are identical, there will

© never be multiple MSTs in G.

© sometimes be multiple MSTs in G.

© always be multiple MSTs in G.

Justification:

3. If all of the edge weights are identical, there will

© never be multiple MSTs in G.

© sometimes be multiple MSTs in G.

© always be multiple MSTs in G.

Justification:



MSTs, Dijkstra’s, and Tries 3

Solution:

1. If none the edge weights are identical, there will

� never be multiple MSTs in G.

© sometimes be multiple MSTs in G.

© always be multiple MSTs in G.

Justification:

To prove this, we can leverage the cut property. Recall the cut property states

that the cheapest edge in any cut is in some MST. However, if the cheapest

edge in any cut is unique, then we get a stronger claim — the cheapest edge

must be in the MST. As such, if none of the edge weights are identical, i.e.

they are all unique, then the cheapest edge in any cut will always be unique,

and we will only have one MST.

2. If some of the edge weights are identical, there will

© never be multiple MSTs in G.

� sometimes be multiple MSTs in G.

© always be multiple MSTs in G.

Justification:

In the graph on the left, the only MST is [AB, BC]. In the graph on the right,

two MSTs exist — [AB, BC] and [AC, BC].

3. If all of the edge weights are identical, there will

© never be multiple MSTs in G.

� sometimes be multiple MSTs in G.

© always be multiple MSTs in G.

Justification:



4 MSTs, Dijkstra’s, and Tries

In the graph on the left, the only MST is [AB, AC]. Note that for any tree, we

only have one MST, since the tree itself is the MST! In the graph on the right,

three MSTs exist — [AB, BC], [AC, BC], and [AB, AC].

(b) Suppose we have a connected, undirected graph G with N vertices and N

edges, where all the edge weights are identical. Find the maximum and

minimum number of MSTs in G and explain your reasoning.

Minimum: _________

Maximum: _________

Justification:

Solution: Minimum: 3, Maximum: N

Justification: Notice that if all the edge weights are the same, an MST is just

a spanning tree. Let’s begin by creating a tree, i.e. a connected graph with

N − 1 edges. Now, notice that there is only one spanning tree, since the graph

is itself a tree.

As such, the problem reduces to: how many spanning trees can the insertion

of one edge create? If we add an edge to a tree, it will create a cycle that can

be of length at minimum 3 and at maximum N . Then, notice that we can

only remove any edge from a cycle to create a spanning tree, so we have at

minimum 3 and at maximum N possible MSTs in G.

(c) It is possible that Prim’s and Kruskal’s find different MSTs on the same

graph G (as an added exercise, construct a graph where this is the case!).

Given any graph G with integer edge weights, modify G to ensure that Prim’s

and Kruskal’s will always find the same MST. You may not modify Prim’s or

Kruskal’s.

Hint: Look at subpart 1 of part a.

Solution: To ensure that Prim’s and Kruskal’s will always produce the same

MST, notice that if G has unique edges, only one MST can exist, and Prim’s

and Kruskal’s will always find that MST! So, what if we modify G to ensure

that all the edge weights are unique?

To achieve this, let’s strategically add a small, unique offset between 0 and

1, exclusive, to each edge. It is important that we choose an offset between

0 and 1 so that this added value doesn’t change the MST, since all the edge



MSTs, Dijkstra’s, and Tries 5

weights are integers. It is also important that the offset is unique for each edge,

because then we ensure each weight is distinct. Pseudocode for such a change

is shown below:

E = number of edges in the graph

offset = 0

for edge in graph:

edge.weight += offset

offset += 1 / E

In regard to the added exercise, here is a simple graph G where Prim’s and

Kruskal’s produce different MSTs. Prim’s starting from A will select AD, BD,

and CD, whereas Kruskals will select AD, BC, and BD.



6 MSTs, Dijkstra’s, and Tries

3 Graph Algorithm Design
For each of the following scenarios, write a brief description for an algorithm for

finding the MST in an undirected, connected graph G.

(a) If all edges have edge weight 1. Hint: Runtime is O(V+E)

The key idea here is that any tree which connects all nodes is an MST. We

can run DFS and take the DFS tree. You could also take a BFS tree, or run

Prim’s algorithm with a queue or stack instead of a priority queue (this would

be equivalent to BFS/DFS). Unfortunately, a modified Kruskal’s will be slightly

slower, because even if we don’t need to sort edges, the union-find operations

will take additional time.

(b) If all edges have edge weight 1 or 2. Hint: Use your algorithm from part (a)

Remove weight 2 edges from the graph so only weight 1 edges remain. Now run

an algorithm from part (a) as far as possible (e.g. find a DFS forest). We will

have some number of connected components. Use these connected components

as nodes in a new graph G*. Look at the weight 2 edges in G. For each edge, if

the nodes containing the two endpoints are not already connected in G*, add an

edge between the two containing nodes in G*. Now we can run our algorithm

from part (a) again to complete the MST.



MSTs, Dijkstra’s, and Tries 7

4 A Wordsearch
Given an N by N wordsearch and N words, devise an algorithm to solve the word-

search in O(N3). For simplicity, assume no word is contained within another, i.e.

if the word ”bear” is given, ”be” wouldn’t also be given.

If you are unfamiliar with wordsearches or want to gain some wordsearch solving

intuition, see below for an example wordsearch. Note that the below wordsearch

doesn’t follow the precise specification of an N by N wordsearch with N words, but

your algorithm should work on this wordsearch regardless.

Example Wordsearch:

Hint: Add the words to a Trie, and you may find the longestPrefixOf operation

helpful. Recall that longestPrefixOf accepts a String key and returns the longest

prefix of key that exists in the Trie, or null if no prefix exists.

Algorithm: Begin by adding all the words we are querying for into a Trie. Next,

we will iterate through each letter in the wordsearch and see if any words start with

that letter. For a word to start with a given letter, note that it can go in one of

eight directions — N, NE, E, SE, S, SW, W, NW.

Looking at each direction, we will check if the string going in that direction has a

prefix that exists in our Trie, which we can do using longestPrefixOf. Note that

words are not nested inside of others, so at most one word can start from a given

letter in a given direction. As such, if longestPrefixOf returns a word, we know it

is the only word that goes in that direction from that letter.

For instance, if we are at the letter ”S” in the middle of the top row of the wordsearch

above and are considering the direction west, we would want to see if the string "

SOHUMC" has a prefix that exists in the given wordsearch. To efficiently perform this

https://algs4.cs.princeton.edu/52trie/TrieST.java.html


8 MSTs, Dijkstra’s, and Tries

query, we call longestPrefixOf("SOHUMC"), which, in this case, returns "SOHUM",

and we proceed by removing "SOHUM" from our Trie to signal that we found the

word "SOHUM".

We will repeat this process until the all the words have been found, i.e. when the

Trie is empty. Finally, note that this is a very open ended problem, so this is one

of many possible solutions.

Runtime: We look at N2 letters. At each letter, we execute eight calls to longestPrefixOf

which runs in time linear to the length of the inputted string, which can be of at

most length N , since that is the height and width of the wordsearch. Thus, if we

perform on the order of N work per letter and we look at N2 letters, the runtime

is O(N3).


	Oracle Dijkstra's
	Multiple MSTs
	Graph Algorithm Design
	A Wordsearch

