
CS 61B Sorting
Spring 2021 Exam Prep Discussion 12: April 12, 2021

1 Identifying Sorts
Below you will find intermediate steps in performing various sorting algorithms

on the same input list. The steps do not necessarily represent consecutive steps

in the algorithm (that is, many steps are missing), but they are in the correct

sequence. For each of them, select the algorithm it illustrates from among the

following choices: insertion sort, selection sort, mergesort, quicksort (first element

of sequence as pivot), and heapsort. When we split an odd length array in half in

mergesort, assume the larger half is on the right.

Input list: 1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

(a) 1429, 3291, 7683, 192, 1337, 594, 4242, 9001, 4392, 129, 1000

1429, 3291, 192, 1337, 7683, 594, 4242, 9001, 129, 1000, 4392

192, 1337, 1429, 3291, 7683, 129, 594, 1000, 4242, 4392, 9001

(b) 1337, 192, 594, 129, 1000, 1429, 3291, 7683, 4242, 9001, 4392

192, 594, 129, 1000, 1337, 1429, 3291, 7683, 4242, 9001, 4392

129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001

(c) 1337, 1429, 3291, 7683, 192, 594, 4242, 9001, 4392, 129, 1000

192, 1337, 1429, 3291, 7683, 594, 4242, 9001, 4392, 129, 1000

192, 594, 1337, 1429, 3291, 7683, 4242, 9001, 4392, 129, 1000

(d) 1429, 3291, 7683, 9001, 1000, 594, 4242, 1337, 4392, 129, 192

7683, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 129, 9001

129, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 7683, 9001

In all these cases, the final step of the algorithm will be this:

129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001



2 Sorting

2 Conceptual Sorts
Answer the following questions regarding various sorting algorithms that we’ve dis-

cussed in class. If the question is T/F and the statement is true, provide an expla-

nation. If the statement is false, provide a counterexample.

(a) (T/F) Quicksort has a worst case runtime of Θ(NlogN), where N is the number

of elements in the list that we’re sorting.

(b) We have a system running insertion sort and we find that it’s completing

faster than expected. What could we conclude about the input to the sorting

algorithm?

(c) Give a 5 integer array that elicits the worst case runtime for insertion sort.

(d) (T/F) Heapsort is stable.

(e) Give some reasons as to why someone would use mergesort over quicksort.



Sorting 3

(f) You will be given an answer bank, each item of which may be used multiple

times. You may not need to use every answer, and each statement may have

more than one answer.

A. QuickSort (in-place using Hoare partitioning and choose the leftmost item

as the pivot)

B. MergeSort

C. Selection Sort

D. Insertion Sort

E. HeapSort

N. (None of the above)

List all letters that apply. List them in alphabetical order, or if the answer

is none of them, use N indicating none of the above. All answers refer to the

entire sorting process, not a single step of the sorting process. For each of the

problems below, assume that N indicates the number of elements being sorted.

_______________ Bounded by Ω(NlogN)lower bound.

_______________ Has a worst case runtime that is asymptotically better than

Quicksort’s worstcase runtime.

_______________ In the worst case, performs Θ(N) pairwise swaps of elements.

_______________ Never compares the same two elements twice.

_______________ Runs in best case Θ(logN)time for certain inputs



4 Sorting

3 Bears and Beds
The hot new Cal startup AirBearsnBeds has hired you to create an algorithm to help

them place their customers in the best possible homes to improve their experience.

They are currently in their alpha stage so their only customers (for now) are bears.

Now, a little known fact about bears is that they are very, very picky about their

bed sizes: they do not like their beds too big or too little - they like them just right.

Bears are also sensitive creatures who don’t like being compared to other bears, but

they are perfectly fine with trying out beds.

The Problem:

Given a list of Bears with unique but unknown sizes and a list of Beds with corre-

sponding but also unknown sizes (not necessarily in the same order), return a list

of Bears and a list of Beds such that that the ith Bear in your returned list of Bears

is the same size as the ith Bed in your returned list of Beds. Bears can only be

compared to Beds and we can get feedback on if the Bed is too large, too small,

or just right. In addition, Beds can only be compared to Bears and we can get

feedback if the Bear is too large for it, too small for it, or just right for it.

The Constraints:

Your algorithm should run in O(N logN) time on average. It may be helpful to

figure out the naive O(N2) solution first and then work from there.


	Identifying Sorts
	Conceptual Sorts
	Bears and Beds

