
CS 61B More Sorting
Spring 2021 Exam Prep Discussion 13: April 19, 2021

1 Sorted Runtimes
We want to sort an array of N unique numbers in ascending order. Determine the

best case and worst case runtimes of the following sorts:

(a) Once the runs in merge sort are of size <= N/100, we perform insertion sort

on them.

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(N), Worst Case: Θ(N2)

Once we have 100 runs of size N/100, insertion sort will take best case Θ(N)

and worst case Θ(N2) time. The constant number of linear time merging

operations don’t add to the runtime.

(b) We can only swap adjacent elements in selection sort.

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(N2), Worst Case: Θ(N2)

The best case and worst case don’t change since swapping at most doubles the

work each iteration, which produces the same asymptotic runtime as normal

selection sort.

(c) We use a linear time median finding algorithm to select the pivot in quicksort.

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(N log(N)), Worst Case: Θ(N log(N))

Doing an extra N work each iteration of quicksort doesn’t asymptotically

change the best case runtime, but it improves the worst case runtime.

(d) We implement heapsort with a min-heap instead of a max-heap. You may

modify heapsort but must maintain constant space complexity.

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(N log(N)), Worst Case: Θ(N log(N))

While a max-heap is better, we can make do with a min-heap by placing

the smallest element at the right end of the list until the list is sorted in

descending order. Once the list is in descending order, it can be sorted in

ascending order with a simple linear time pass.
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(e) We run an optimal sorting algorithm of our choosing knowing:

• There are at most N inversions

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(N), Worst Case: Θ(N)

Recall that insertion sort takes Θ(N + K) time, where K is the number

of inversions. If K is at most N, then, insertion sort has the best and

worst case runtime of Θ(N). Here is an explanation for why no sorting

algorithm can surpass this. Notice for our algorithm to terminate we

either need to address every inversion or look at every element. Since

there are at most N inversions, knowing that we have addressed every

inversion would take us at least Θ(N) time. Looking at every element in

the list would also take us Θ(N) time. In either case, we see the runtime

of any sorting algorithm cannot be faster than Θ(N).

• There is exactly 1 inversion

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(1), Worst Case: Θ(N)

The inversion may be the first two elements, in which case constant time

is needed. Or, it may involve elements at the end, in which case N time

is needed. It can be proven quite simply that no sorting algorithm can

achieve a better runtime than above for the best and worst case.

• There are exactly (N2 −N)/2 inversions

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(N), Worst Case: Θ(N)

If a list has N(N − 1)/2 inversions, it means it is sorted in descending

order! So, it can be sorted in ascending order with a simple linear time

pass. We know that reversing any array is a linear time operation, so the

optimal runtime of any sorting algorithm is Θ(N).
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2 MSD Radix Sort
Recursively implement the method msd below, which runs MSD radix sort on a List

of Strings and returns a sorted List of Strings. For simplicity, assume that each

string is of the same length. You may not need all of the lines below.

In lecture, recall that we used counting sort as the subroutine for MSD radix sort,

but any sort works! For the subroutine here, you may use the stableSort method,

which sorts the given list of strings in place, comparing two strings by the given

index. Finally, you may find following methods of the List class helpful:

1. List<E> subList(int fromIndex, int toIndex). Returns the portion of this

list between the specified fromIndex, inclusive, and toIndex, exclusive.

2. addAll(Collection<? extends E> c). Appends all of the elements in the

specified collection to the end of this list, in the order that they are returned

by the specified collection’s iterator.

1 public static List<String> msd(List<String> items) {

2

3 return __________________________________________________________________;

4 }

5

6 private static List<String> msd(List<String> items, int index) {

7

8 if (_____________________________________________________________________) {

9 return items;

10 }

11 List<String> answer = new ArrayList<>();

12 int start = 0;

13

14 _________________________________________________________________________;

15 for (int end = 1; end <= items.size(); end += 1) {

16

17 if (_________________________________________________________________) {

18

19 _________________________________________________________________;

20

21 _________________________________________________________________;

22

23 _________________________________________________________________;

24 }

25 }

26 return answer;

27 }

28 /* You don't need to understand the implementation of this method to use it! */

29 private static void stableSort(List<String> items, int index) {

30 items.sort(Comparator.comparingInt(o -> o.charAt(index)));

31 }
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Solution:

1 public static List<String> msd(List<String> items) {

2 return msd(items, 0);

3 }

4

5 private static List<String> msd(List<String> items, int index) {

6 if (items.size() <= 1 || index >= items.get(0).length()) {

7 return items;

8 }

9 List<String> answer = new ArrayList<>();

10 stableSort(items, index);

11 int start = 0;

12 for (int end = 1; end <= items.size(); end += 1) {

13 if (end == items.size() || items.get(start).charAt(index) != items.get(end).charAt(index)) {

14 List<String> subList = items.subList(start, end);

15 answer.addAll(msd(subList, index + 1));

16 start = end;

17 }

18 }

19 return answer;

20 }

21

22 /* You don't need to understand the implementation of this method to use it! */

23 private static void stableSort(List<String> items, int index) {

24 items.sort(Comparator.comparingInt(o -> o.charAt(index)));

25 }
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3 Shuffled Exams
For this problem, we will be working with Exam and Student objects, both of which

have only one attribute: sid, which is a number like any student ID.

PrairieLearn thought it was ready for the final. It had meticulously created two

arrays, one of Exams and the other of Students, and ordered both on sid such that

the ith Exam in the Exams array has the same sid as the ith Student in the Students

array. Note the arrays are not necessarily sorted by sid. However, PrairieLearn

crashed, and the Students array was shuffled, but the Exams array somehow re-

mained untouched.

Time is precious, so you must design a O(N) time algorithm to reorder the Students

array appropriately without changing the Exams array!

Hint: Begin by reordering both the Students and Exams arrays such that ith Exam

in the Exams array has the same sid as the ith Student in the Students array.

Solution:

Let’s begin by creating an ExamWrapper class that contains two attributes — an

Exam instance and the index of the corresponding Exam in the Exams array. Next,

for each Exam, create the corresponding ExamWrapper instance.

Run radix sort on the ExamWrappers, sorting them on the sid of the Exam instances.

Similarly run radix sort on the list of Students, sorting them on sid as well. Note

that both iterations of radix sort take linear time since the sid is of fixed length

and of base 10.

At this point in the algorithm, we have ”completed” the hint, but we still need

move the ith Student to its proper place relative to the original Exams array. To

acheive this, for the ith Student, we will access the ith ExamWrapper, and set the

index of the ith Student as the ExamWrapper's index attribute.

.
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