
CS 61B Linked Lists & Arrays
Spring 2021 Topical Review Section 2: February 7, 2021

1 Linked List Practice
Here’s a basic SLList class we’ve defined. Assume the SLList constructor is properly

implemented and creates a sentinel with a placeholder value. Use SLList to answer

the following parts.

public class SLList {

private class IntNode {

public int item;

public IntNode next;

public IntNode(int item, IntNode next) {

this.item = item;

this.next = next;

}

}

private IntNode sentinel;

private int size;

public void addFirst(int x) {

this.sentinel.next = new IntNode(x, this.sentinel.next);

this.size += 1;

}

}

(a) Implement addLast(int x), a method of SLList that creates a new IntNode

and adds it to the back of our SLList

public void addLast(int x) {

}

(b) Notice that this is quite slow for long SLLists, why? How can we change

SLList to make this faster?



2 Linked Lists & Arrays

(c) Let’s create a Doubly Linked List class. The DLList should be able to support

a fast insertion at both the front and back of the list. Assume the DLList con-

structor is already implemented and creates a sentinel node with a placeholder

value properly. Also assume sentinel.next points to the first node in the list,

and sentinel.prev points to the last node. Fill in the blanks below:

public class DLList {

private class IntNode {

public int item;

public IntNode(int item, IntNode next, IntNode previous) {

}

}

private IntNode sentinel;

private int size;

public void addFirst(int x) {

this.size += 1;

IntNode oldFront = this.sentinel.next;

IntNode newNode =

}

public void addLast(int x) {

this.size += 1;

IntNode oldBack = this.sentinel.prev;

IntNode newNode =

}

}



Linked Lists & Arrays 3

(d) Implement destructiveReverse, a method of DLList that destructively re-

verses the values of our DLList. For example, if our list is 1 ↔ 3 ↔ 5 ↔ 7,

then destructiveReverse should modify the list to be 7 ↔ 5 ↔ 3 ↔ 1.

destructiveReverse should modify values only, not pointers.

public void destructiveReverse() {

if (this.size == 0) {

return;

}

IntNode lPointer =

IntNode rPointer =

int lIndex = 0;

int rIndex = this.size - 1;

while (___________________________________________________) {

int temp =

}

}



4 Linked Lists & Arrays

2 ArrayLists
Use the following class structure to answer the following parts below.

1 public class AList {

2 private int[] items;

3 private int size;

4 private int FACTOR = 2;

5

6 public AList() {

7 items = new int[100];

8 size = 0;

9 }

10

11 public int getLast() {

12 return items[size - 1];

13 }

14

15 public int get(int i) {

16 return items[i];

17 }

18

19 public int size() {

20 return size;

21 }

22

23 private void resize(int capacity) {

24 int[] a = new int[capacity];

25 System.arraycopy(items, 0,

26 a, 0, size);

27 items = a;

28 }

29 }

(a) Implentation the removeLast(int x) method that ”removes” and returns the

int value at the end of the AList by setting it to null. You do not have to resize

down in this implementation.

public int removeLast() {

}

(b) Finish the implentation of the addLast(int x) method that adds an int at the

end of the AList (index=size). The method should take into account the case



Linked Lists & Arrays 5

when items has no more space available and increase the capacity of items by

a factor of FACTOR. Feel free to use any helper methods available in the code

above.

public void addLast(int x) {

if (___________________________________) {

}

}

(c) Your friend would love to use your AList class for Proj0 of his SC16p class at

UCLA. However, he needs your AList class to have a method that allows him

to remove and return values at specific indices. Since you go to the Number

1 public university in the United States, he requests you to implement remove

(int index) which removes and returns the element at the index. Assume

index is in [0, size) and that the method in part a works as intended.

public int remove(int index) {

for (___________________________________) {

}

}



6 Linked Lists & Arrays

3 ArrayLists vs LinkedLists
Consider the following scenarios. Choose between a LinkedList or an ArrayList

implementation, and explain your reasoning.

(a) Keeping a list of the current stock of products in a supermarket where each

stock item is numbered.

(b) Managing a list of unprocessed orders at a fast food restaurant.

(c) Keeping track of the grades you have for each class as you progress through

the semester.


	Linked List Practice
	ArrayLists
	ArrayLists vs LinkedLists

