
CS 61B Asymptotics
Spring 2021 Topical Review Session 4: February 28, 2021

Here is a review of some formulas that you will find useful when doing asymptotic

analysis.

•
∑N

i=1 i = 1 + 2 + 3 + 4 + · · ·+ N = N(N+1)
2 = N2+N

2

•
∑N−1

i=0 2i = 1 + 2 + 4 + 8 + · · ·+ 2N−1 = 2 · 2N−1 − 1 = 2N − 1

1 Dumpling Time!
For each problem below, give the tighest possible O runtime of the code snippet

(a) public void wrapWonton(int n) {

for (int i = 0; i < n; i++) {

for (int j = 1; j < n; j*=2) {

System.out.println("Wrapping");

}

System.out.println("Wonton Wrapped!");

}

}

The runtime is O(nlog(n)) since the inner for loop runs in O(log(n)) time and

that inner loop is run n times

(b) public void wrapDumpling(int n) {

for (int i = 0; i < n; i++) {

for (int j = i; j < n; j++) {

System.out.println("Wrapping");

}

System.out.println("Dumpling Wrapped!");

}

}

The runtime is O(n2) since the loop runs for n + (n − 1) + (n − 2) + ...1 =
n(n+1)

2 = n2

(c) public void wrapBigDumpling(int n) {

wrapDumpling(n);

wrapBigDumpling(n/2);

}

The runtime is O(n2) since each wrapDumpling call takes n2 time but is called

on exponentially decaying n. The runtime is n2 + n2

4 + n2

16 + ... = 4
3n

2 = O(n2)

(d) public void letsEat(int n) {

for (int i = 0; i < n; i++) {

for (int j = i; i < n; i++) {

System.out.println("Eating");
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}

}

System.out.println("Done eating!");

}

The runtime is O(n) since the both the inner and outer loop will end once

i = n, which occurs when the first inner loop ends.
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2 I am Speed
For each example below, there are two algorithms solving the same problem. Given

the asymptotic runtimes for each, is one of the algorithms guaranteed to be faster?

If so, which? And if neither is always faster, explain why.

(a) Algorithm 1: Θ(N), Algorithm 2: Θ(N2)

Algorithm 1: Θ(N) - Θ gives tightest bounds therefore the slowest algorithm

1 could run is relative to N while the fastest algorithm 2 could run is relative

to N2.

(b) Algorithm 1: Ω(N), Algorithm 2: Ω(N2)

Neither, Ω(N) means that algorithm 1’s running time is lower bounded by N ,

but does not provide an upper bound. Hence the bound on algorithm 1 can be

any function >= N and it could also be in Ω(N2) or lower bounded by N2.

(c) Algorithm 1: O(N), Algorithm 2: O(N2)

Neither, same reasoning for part (b) but now with upper bounds. O(N2) could

also be in O(1).

(d) Algorithm 1: Θ(N2), Algorithm 2: O(logN)

Algorithm 2: O(logN) - Algorithm 2 cannot run SLOWER than O(logN)

while Algorithm 1 is constrained on to run FASTEST and SLOWEST by

Θ(N2).

(e) Algorithm 1: O(N logN), Algorithm 2: Ω(N logN)

Neither, Algorithm 1 CAN be faster, but it is not guaranteed - it is guaranteed

to be ”as fast as or faster” than Algorithm 2.
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3 Getting A Little Loopy
Give the runtime for each method in Θ(·) notation in terms of the inputs. You may

assume that System.out.println is a constant time operation.

(a) Hint: We cannot multiply over the two iterations of the for loop to find the

runtime. Why?

public static void liftHill(int N) {

for (int i = 1; i < N * N; i *= 2) {

for (int j = 0; j <= i; j++) {

System.out.println("-_-");

}

}

}

The runtime is Θ(N2). The iterations of the inner for loop depend on the

outer for loop, meaning we can’t just multiply the runtimes. For each i, the

inner loop runs i iterations. Summing over the sequence of is should yield the

runtime. As such, we will sum from powers of 2 for i (as i is doubled in each

iteration, up to N2), like so: 1 + 2 + 4 + 8 + ... + N2. This is Θ(N2).

(b) Assume that Math.pow ∈ Θ(1) and returns an int.

public static void doubleDip(int N) {

for (int i = 0; i < N; i += 1) {

int numJ = Math.pow(2, i + 1) - 1;

for (int j = 0; j <= numJ; j += 1) {

System.out.println("AHHHH");

}

}

}

The runtime is Θ(2n). The inner while loop runs 2i+1−1 iterations, depending

on what i is in the outer for loop. Then, we can say the total number of itera-

tions is represented by the summation
∑N−1

i=0 2i+1 − 1. This can be rewritten

as
∑N−1

i=0 2i+1 −
∑N−1

i=0 1 and the second term can be discarded for runtime

considerations. Notice that the largest term of the remaining summation is 2n.

(c) Hint: When do we return ”WHOA”?

public static String corkscrew(int N) {

for (int i = 0; i <= N; i += 1) {

for (int j = 1; j <= N; j *= 2) {

if (j >= N/2) {

return "WHOA";

}

}

}

}

The runtime is Θ(logN). Notice that we return ”WHOA” when j = N/2,
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which means that the outer loop is insignificant: we end in its first iteration.

Only considering the inner for loop, j doubles in each iteration, meaning it

grows towards N in a logarithmic fashion.

(d) Hint: Draw the recursive tree!.

public static int corkscrewWithATwist(int N) {

if (N == 0) return 011010110110110101110011;

for (int i = 0; i <= N; i += 1) {

for (int j = 1; j <= N; j += 1) {

if (j >= N/2) return corkscrewWithATwist(N/2) + 1;

}

}

}

The runtime is Θ(N). When we draw the recursive tree, we see that the tree’s

height is logN as we are halving the input every time. There is only one

recursive call, so our branching factor is 1. Similar to part (c), we notice that

the recursive calls are made in 1 iteration of the outer for loop, meaning that

at some layer i, we do N
2i work. If we sum all over each node (

∑logN
i=1

N
2i ), we

get Θ(N).
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4 Challenge
If you have time, try to answer this challenge question. For each answer true or

false. If true, explain why and if false provide a counterexample.

(a) If f(n) ∈ O(n2) and g(n) ∈ O(n) are positive-valued functions (that is for all

n, f(n), g(n) > 0), then f(n)
g(n) ∈ O(n).

Nope this does not hold in general! Consider if f(n) = n2 and g(n) = 1
n .

Readily we have f(n), g(n) ∈ O(n) but when divided they give us:

f(n)

g(n)
=

n2

n−1
= n3 /∈ O(n)

(b) Would your answers for problem 2 change if we did not assume that N was

very large (for example, if there was a maximum value for N , or if N was

constant)?

Depends, because for fixed N , constants and lower order terms may dominate

the function we are trying to bound. For example N2 is asymptotically larger

than 10000N , yet when N is less than 10000, 10000N is larger than N2. This

highlights the power in using big-O because these lower order terms don’t affect

the running time as much as our input size grows very large!

However, part of the definition of O(·), Ω(·), and Θ(·) is the limit to infinity

(limN→∞) so, when working with asymptotic notation, we must always assume

large inputs.

(c) Extra If f(n) ∈ Θ(n2) and g(n) ∈ Θ(n) are positive-valued func-

tions, then f(n)
g(n)
∈ Θ(n). Note: The mathematical complexity in

this problem is not in scope for 61B.

This does hold in general! We can think about this in two cases:

• First we ask, when can the ratio f(n)
g(n)

be larger than n. As

f(n) is tightly bounded (by Θ) by n2, this is only true when

g(n) is asymptotically smaller than n because we are dividing

n2 (this is what happened in part a). However, g(n) is tightly

bounded, and thus lower bounded by n, this cannot happen.

• Next we ask, when can the ratio be smaller than n. Again as

f(n) is tightly bounded by n2, this can only happen when g(n)

is asymptotically bigger than n as again we are dividing. But

since g(n) is tightly bounded, and thus upper bounded by n,

this too cannot happen.

So what we note here is that f(n)
g(n)

is upper and lower bounded by n

hence it is in Θ(n). We can also give a rigorous proof from definition

of part b using the definitions provided in class.
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Theorem 1. If f(n) ∈ Θ(n2) and g(n) ∈ Θ(n) are positive-valued

functions, then f(n)
g(n)
∈ Θ(n).

Proof. Given that f ∈ Θ(n2) is positive, by definition there exists

k0, k
′
0 > 0 such that for all n > N , the following holds.

k0n
2 ≤ f(n) ≤ k′

0n
2

Similarly, g ∈ Θ(n) implies there exists k1, k
′
1 > 0 such that

k1n ≤ g(n) ≤ k′
1n

Now consider f(n)
g(n)

.

f(n)

g(n)
≤ k′

0n
2

k1n
=

k′
0n

k1
∈ O(n)

f(n)

g(n)
≥ k0n

2

k′
1n

=
k0n

k′
1

∈ Ω(n)

As f(n)
g(n)

is in O(n) and Ω(n) then it is in Θ(n).
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