
CS 61B Comparison Sorts
Spring 2021 Topical Review Session 6: April 18, 2021

1 Sorting - Step by step
Show the steps taken by each sort on the following unordered list of integers (where

duplicates are indicated with letters):

2, 1, 8, 4A, 6, 7, 9, 4B

(a) Selection Sort 1 | 2 8 4A 6 7 9 4B

1 2 | 8 4A 6 7 9 4B

1 2 4A | 8 6 7 9 4B

1 2 4A 4B | 6 7 9 8

1 2 4A 4B 6 | 7 9 8

1 2 4A 4B 6 7 | 9 8

1 2 4A 4B 6 7 8 | 9

1 2 4A 4B 6 7 8 9 |

(b) Insertion Sort

2 | 1 8 4A 6 7 9 4B

1 2 | 8 4A 6 7 9 4B

1 2 8 | 4A 6 7 9 4B

1 2 4A 8 | 6 7 9 4B

1 2 4A 6 8 | 7 9 4B

1 2 4A 6 7 8 | 9 4B

1 2 4A 6 7 8 9 | 4B

1 2 4A 4B 6 7 8 9 |

(c) Merge Sort

2 1 8 4A 6 7 9 4B

2 1 8 4A 6 7 9 4B

2 1 8 4A 6 7 9 4B

2 1 8 4A 6 6 7 9 4B

1 2 4A 8 6 7 4B 9

1 2 4A 8 4B 6 7 9

1 2 4A 4B 6 7 8 9

(d) Heap Sort Note: if both children are equal, sink to the left.

9 6 8 4A 1 7 2 4B ← heapified!

8 6 7 4A 1 4B 2 | 9

7 6 4B 4A 1 2 | 8 9

6 4A 4B 2 1 | 7 8 9

4A 2 4B 1 | 6 7 8 9

2 Comparison Sorts

4B 2 1 | 4A 6 7 8 9

2 1 | 4B 4A 6 7 8 9

1 | 2 4B 4A 6 7 8 9

| 1 2 4B 4A 6 7 8 9

Comparison Sorts 3

2 Sorting Runtime
Fill out the best-case and worst case runtimes for these sorts as well as whether

they are stable or not in the table below.

Best Case Worst Case Stable

Insertion Sort Θ(N) Θ(N2) Yes

Selection Sort Θ(N2) Θ(N2) No

Merge Sort Θ(NlogN) Θ(NlogN) Yes

Heap Sort Θ(N) Θ(NlogN) No

Quick Sort Θ(NlogN) Θ(N2) Depends

Notes:

- Insertion Sort is good for small and nearly sorted arrays

- Heapsort’s best case is achieved when all the items are duplicates (so heapification

takes constant time)

- In practice, quicksort is the fastest sort

4 Comparison Sorts

3 Identifying Sorts
Below you will find intermediate steps in performing various sorting algorithms

on the same input list. The steps do not necessarily represent consecutive steps

in the algorithm (that is, many steps are missing), but they are in the correct

sequence. For each of them, select the algorithm it illustrates from among the

following choices: insertion sort, selection sort, mergesort, quicksort (first element

of sequence as pivot), and heapsort.

Input list: 1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

(a) Mergesort. One identifying feature of mergesort is that the left and right halves

do not interactwith each other until the very end.

1429, 3291, 7683, 192, 1337, 594, 4242, 9001, 4392, 129, 1000

1429, 3291, 192, 1337, 7683, 594, 4242, 9001, 129, 1000, 4392

192, 1337, 1429, 3291, 7683, 129, 594, 1000, 4242, 4392, 9001

(b) Quicksort. First item was chosen as pivot, so the first pivot is 1429, meaning

the first iteration should break up the array into something like | < 1429 | =

1429 | > 1429

1337, 192, 594, 129, 1000, 1429, 3291, 7683, 4242, 9001, 4392

192, 594, 129, 1000, 1337, 1429, 3291, 7683, 4242, 9001, 4392

129, 192, 594, 1000, 1337, 1429, 3291, 4242, 9001, 4392, 7683

(c) Insertion Sort. Insertion sort starts at the front, and for each item, move to

the front as far as possible. These are the first few iterations of insertion sort

so the right side is left unchanged

1337, 1429, 3291, 7683, 192, 594, 4242, 9001, 4392, 129, 1000

192, 1337, 1429, 3291, 7683, 594, 4242, 9001, 4392, 129, 1000

192, 594, 1337, 1429, 3291, 7683, 4242, 9001, 4392, 129, 1000

(d) Heapsort. This one’s a bit more tricky. Basically what’s happening is that

the first line is in the middle of heapifying this list into a maxheap. Then we

continually remove the max and place it at the end.

1429, 3291, 7683, 9001, 1000, 594, 4242, 1337, 4392, 129, 192

7683, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 129, 9001

129, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 7683, 9001

In all these cases, the final step of the algorithm will be this:

129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001

Comparison Sorts 5

4 Sorting Hat
The Sorting Hat has asked the 4 Houses to provide one new sorting algorithm each,

which are modified versions of the sorts you have learned in 61B so far. For each

of the algorithms, give the best and worst case runtimes using Θ(·) notation with

respect to the number of the elements in our input list, N . (Note that Slytherin

chose not to participate as they were not selected as winners for the previous Sorting

Hat competition).

(a) LionSort: Gryffindor has modified selection sort to additionally swap the

maximum element of our unsorted list to the back at each iteration. Assume

finding this maximum element takes Θ(N) time.

Selection sort has a runtime of
∑N

i=1 i ∈ Θ(N2). After Gryffindor’s modifica-

tion, the sort does half the passes, but does more work on each of these passes

because we have to find both the maximum and the minimum element in the

pass. The runtime then, is
∑N

i=1 2i ∈ Θ(N2).

(b) EagleSort: Ravenclaw has decided to insert elements into a BST and then

perform an in-order traversal on the tree to find their sorted order. In addition

to performance, what sort is this most like?

First consider the runtime of inserting into a BST. For a balanced BST, the

runtime for inserting N items is Θ(N2) for spindly trees and Θ(N logN) for

bushy trees. The in-order traversal of the tree is the runtime of DFS, which is

Θ(N) as we do not care about edges (our runtime is only with respect to the

input list). This leaves us with a worst case runtime of Θ(N2) and a best case

runtime of Θ(N logN). EagleSort is most similar to quicksort as we can think

of each BST element as a pivot for inserting new items.

(c) BadgerSort: Hufflepuff decide to modify merge sort by changing how sorted

runs are merged. Instead of merging two sorted runs by iteratively choosing

the minimum, Hufflepuff insertion sort the concatenation of the runs at each

level using selection sort.

Hufflepuff did not make use of the fact that each of the merged halves are

already sorted. Selection sort on each merge will take θ(n2) where n is the

number of items concatenated together. This sums as:

N2 + 2 ∗ (N/2)2 + ...+ logN ∗ (N/ logN)2

Which ends up becoming asymptotically N2. Hufflepuff made merge sort

worse.

6 Comparison Sorts

5 Choose A Sort
For each of the following scenarios, choose the best sort to use. Explain your

reasoning.

(a) The list you have to sort was created by taking a sorted list and swapping N

pairs of adjacent elements.

Insertion sort. A list created in such a manner will have at most N inver-

sions. Recall insertion sort runs in Θ(N +K) time, where K is the number of

inversions, so our overall runtime would be Θ(N).

(b) You have to sort a list on a machine where swapping two elements is much more

costly than comparing two elements and you want to do the sort in place.

Selection sort. In its most common implementation, selection sort performs N

swaps in the worst case, whereas all other common sorts perform Ω(NlogN)

swaps.

(c) Your list is so large that not all of the data will fit into your computer at once.

As is, at any given time most of the list must be stored in some external device

(an HDD), where accessing it is extremely slow.

Merge sort. The divide-and-conquer strategy works well with the restriction

on only being able to hold a partition of the list at any given time. Sorted runs

of the list can be merged on your computer and flushed to the HDD one block

at a time, minimizing HDD accesses. Note that Quicksort, with three way

partitioning, is also valid. However, quicksort would more likely end up with

a bad distribution, where as merge sort always leaves equal sized partitions.

(d) Given a list of emails ordered by send time, sort the list such the emails are

ordered by the sender’s name first while secondarily maintaining the time-

ordering.

Merge sort. The usual implementation of quicksort is unstable and can change

the time-ordering when sorting.

(e) You have a randomly shuffled list, where each number is unbounded in size,

and want to sort the elements.

Quicksort. It is empirically faster than merge sort, and stability is not an issue.

	Sorting - Step by step
	Sorting Runtime
	Identifying Sorts
	Sorting Hat
	Choose A Sort

